2+2=4y2*2=4y2+2=110

Simple and best practice solution for 2+2=4y2*2=4y2+2=110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+2=4y2*2=4y2+2=110 equation:



2+2=4y^2*2=4y^2+2=110
We move all terms to the left:
2+2-(4y^2*2)=0
We add all the numbers together, and all the variables
-(4y^2*2)+4=0
We get rid of parentheses
-4y^2*2+4=0
Wy multiply elements
-8y^2+4=0
a = -8; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-8)·4
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-8}=\frac{0-8\sqrt{2}}{-16} =-\frac{8\sqrt{2}}{-16} =-\frac{\sqrt{2}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-8}=\frac{0+8\sqrt{2}}{-16} =\frac{8\sqrt{2}}{-16} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 3(2x-1)=8x+5-2x-8 | | f(-2)=4 | | 2+2=4y2*2=4y2+2=100 | | -10=8+3v | | -v/3=49 | | -4x-68=88-10x | | 159-w=225 | | -28=-2v | | 2=z7 | | -5/6t=3/10 | | 5w-8=57 | | -5/4t=1/8 | | 36=2v+10 | | -2=5+u | | v/3-11=30 | | 1/5m=2/5 | | -2x-3x(6x-11)=7 | | 8/7v=3/2 | | 4.3*y=37.41 | | 4-3x+x^2=0 | | 3x^26x=0 | | -3-5y=15 | | x^2/10+8=15 | | 2x-4+3+452+6324-34=0 | | 8x+74=2x+56​ | | 2(4-3x)=3(3x+1) | | 8-x=-3x-16 | | 9^3+8x=2^4-2x | | 4x+7−6x=5−4x+4 | | f+15=18 | | 6x=15+51 | | 4(v+6)=-3(7v-5)+7V4(v+6)=-3(7v-5)+7V |

Equations solver categories