2+0.8x=9/10x

Simple and best practice solution for 2+0.8x=9/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+0.8x=9/10x equation:



2+0.8x=9/10x
We move all terms to the left:
2+0.8x-(9/10x)=0
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.8x-(+9/10x)+2=0
We get rid of parentheses
0.8x-9/10x+2=0
We multiply all the terms by the denominator
(0.8x)*10x+2*10x-9=0
We add all the numbers together, and all the variables
(+0.8x)*10x+2*10x-9=0
We multiply parentheses
0x^2+2*10x-9=0
Wy multiply elements
0x^2+20x-9=0
We add all the numbers together, and all the variables
x^2+20x-9=0
a = 1; b = 20; c = -9;
Δ = b2-4ac
Δ = 202-4·1·(-9)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{109}}{2*1}=\frac{-20-2\sqrt{109}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{109}}{2*1}=\frac{-20+2\sqrt{109}}{2} $

See similar equations:

| x^2=-7x=-x+7 | | -17x+-11=7x+85 | | -3-7=7x+2-6x | | 2x+3+5x+4=4x+13 | | w/6+1/4=-3 | | 4=e/2+3 | | 5p-11=-5 | | 1/4(r-8)=r-2 | | z/4+8=11 | | 2(4x+3)-1=5+8x | | 14n=6n+6-2n | | 9x=-252–585 | | 27+3x=9+6x | | 0.79x+12=1.19x | | A(3x2-2)=6x2+B | | 4-3(3x+4)=10 | | 5m+10=280 | | 6x-31=x-64 | | 1/6d+2/4=1/4(d-2) | | 3/8+2=1w/4 | | 21x-59=360 | | 3x+6=4x+7 | | 2x10=3x+6 | | 25-3(2x+1)=10x-3(10+x) | | x-5÷4=8 | | (y-10)°-4y°=20 | | -5x=-1296-44 | | 3(2x+1)+x-2=7x+1 | | x+16=5-32 | | 2j-13=6.7 | | 25-3(x+1)=10x-3(10+x) | | 0=3.7m |

Equations solver categories