2(x-3)2x=10-4(x-1)

Simple and best practice solution for 2(x-3)2x=10-4(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-3)2x=10-4(x-1) equation:



2(x-3)2x=10-4(x-1)
We move all terms to the left:
2(x-3)2x-(10-4(x-1))=0
We multiply parentheses
4x^2-12x-(10-4(x-1))=0
We calculate terms in parentheses: -(10-4(x-1)), so:
10-4(x-1)
determiningTheFunctionDomain -4(x-1)+10
We multiply parentheses
-4x+4+10
We add all the numbers together, and all the variables
-4x+14
Back to the equation:
-(-4x+14)
We get rid of parentheses
4x^2-12x+4x-14=0
We add all the numbers together, and all the variables
4x^2-8x-14=0
a = 4; b = -8; c = -14;
Δ = b2-4ac
Δ = -82-4·4·(-14)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12\sqrt{2}}{2*4}=\frac{8-12\sqrt{2}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12\sqrt{2}}{2*4}=\frac{8+12\sqrt{2}}{8} $

See similar equations:

| 12x+89=10x+47=180 | | 7.4x+3-9=6+7.4.x | | 6a+3-9a=7 | | 5-6p=41 | | 3x-3=6(2x-5) | | 15x-5=(3x-1) | | 3x-40=x+1 | | 2(x+6)+7(2x-5)=4(2x-5)-3(x+6) | | 4x+150•=2x | | -1/2(6x+8)=-5-3x | | 16=14r | | 2(3b=12+1)= | | 2x-(x+8)=10 | | 0=200–4x | | 947/p=3.33/1 | | 15+1.2x=2.4x | | x2-7x10=0 | | (5x+11)=(9x-29) | | -6.8*h-3=24.4 | | -6(b-4)=b-(4-7b) | | 1.25=2x2 | | 1x-15=x | | 8p+2-5p=-16 | | w²-12w+36=0 | | x=60+45+60 | | –10+9z−7=6z+10 | | 8x-4=-3x-48 | | 2.5x+16=-44 | | 5+5p=6p | | 15x-3=5x+67=180 | | 5x-2(x-5=-2+5x+4 | | 15-1.2x=2.4x |

Equations solver categories