2(x+5)=6(x-1)x=4

Simple and best practice solution for 2(x+5)=6(x-1)x=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+5)=6(x-1)x=4 equation:



2(x+5)=6(x-1)x=4
We move all terms to the left:
2(x+5)-(6(x-1)x)=0
We multiply parentheses
2x-(6(x-1)x)+10=0
We calculate terms in parentheses: -(6(x-1)x), so:
6(x-1)x
We multiply parentheses
6x^2-6x
Back to the equation:
-(6x^2-6x)
We get rid of parentheses
-6x^2+2x+6x+10=0
We add all the numbers together, and all the variables
-6x^2+8x+10=0
a = -6; b = 8; c = +10;
Δ = b2-4ac
Δ = 82-4·(-6)·10
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{19}}{2*-6}=\frac{-8-4\sqrt{19}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{19}}{2*-6}=\frac{-8+4\sqrt{19}}{-12} $

See similar equations:

| -118=-5(4=7x)7 | | 6(x+3)=4(×+4) | | 4=2(v+4)-6v | | r2=3.7 | | a+3+4=6 | | -(6-2x)+6=2(x-5) | | 5-6x=-3x+17 | | x/11+57=132 | | -9m+(-6m)=-15 | | 5(4x-5)=28 | | 5(x+3)=19+x | | x-20/5=-4x=10 | | m-1/2=2+m | | 4(5+2x)=(7+3x)3 | | 3•5•6=x | | 14.6+m=32.3 | | -6(1+8x)=4x-38 | | -78+121x^2=66 | | -2z+33=-22 | | x=180-3x-60 | | -9x+19=-56 | | (3/5)x+1/2=(7/10)x-2/5 | | x+4/2=x+(-3) | | -10a-(-12a)=-20 | | 4(5x+2)+11=18×+3 | | 4=(2x+24 | | 3+5t-5=3t-14 | | -1/2x-x=-82/189 | | 2/5=f-3/5 | | 130+.80=60+.90x | | s/2-8=-7 | | X/4-8=2x+6 |

Equations solver categories