2(x+5)(x-2)=x(x+5)+220

Simple and best practice solution for 2(x+5)(x-2)=x(x+5)+220 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+5)(x-2)=x(x+5)+220 equation:



2(x+5)(x-2)=x(x+5)+220
We move all terms to the left:
2(x+5)(x-2)-(x(x+5)+220)=0
We multiply parentheses ..
2(+x^2-2x+5x-10)-(x(x+5)+220)=0
We calculate terms in parentheses: -(x(x+5)+220), so:
x(x+5)+220
We multiply parentheses
x^2+5x+220
Back to the equation:
-(x^2+5x+220)
We multiply parentheses
2x^2-4x+10x-(x^2+5x+220)-20=0
We get rid of parentheses
2x^2-x^2-4x+10x-5x-220-20=0
We add all the numbers together, and all the variables
x^2+x-240=0
a = 1; b = 1; c = -240;
Δ = b2-4ac
Δ = 12-4·1·(-240)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*1}=\frac{-32}{2} =-16 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*1}=\frac{30}{2} =15 $

See similar equations:

| 4m÷5-2m÷3=3 | | 10u=u+81 | | z-9=19 | | x=2(3.14159265359)(40/360) | | 4m/5-2m/3=3 | | -3/4x=-1/2x-5 | | (2x/3)-(2x/12)=2-3x/6 | | x=2(3.14)(40/360) | | 4/5-a=3a/5 | | 3/4(x-2)-1/8=x | | 3x-2/7=-2 | | 2^(2x+2)=256 | | 2^2x+2=256 | | 12(2x-5=12+3(6x+2) | | -3/4x+4=-1/2x-1 | | x/2.5=0.04 | | 4-y=1-4 | | -3(2x+1)+x=2.5 | | -3r+7r=7r | | 5(x-2)-(x-2)=0 | | -2/5x^-3/7=4/3 | | 1/3x^-1/2=1/4 | | -3(2x+1)=x | | 1/2x^+2/3=5/6 | | Y=((300)/x) | | 2x-8+7=x | | 3x^2+5x=8x+18 | | (35x-50)÷5=2x+15 | | -u-(5+13u)+10=-6(4u+1)+7u | | 4x-16=26 | | 7x^2-36x+13=0 | | (4x)2-20x=0 |

Equations solver categories