If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x+2)(x-3)-2x=(x+1)-2)(x+2)
We move all terms to the left:
2(x+2)(x-3)-2x-((x+1)-2)(x+2))=0
We add all the numbers together, and all the variables
-2x+2(x+2)(x-3)-((x+1)-2)(x+2))=0
We multiply parentheses ..
2(+x^2-3x+2x-6)-2x-((x+1)-2)(x+2))=0
We calculate terms in parentheses: -((x+1)-2)(x+2)), so:We multiply parentheses
(x+1)-2)(x+2)
We add all the numbers together, and all the variables
(x+1)-2)(x
We get rid of parentheses
x-2)(x+1
Back to the equation:
-(x-2)(x+1)
2x^2-6x+4x-2x-(x-2)(x+1)-12=0
We multiply parentheses ..
2x^2-(+x^2+x-2x-2)-6x+4x-2x-12=0
We add all the numbers together, and all the variables
2x^2-(+x^2+x-2x-2)-4x-12=0
We get rid of parentheses
2x^2-x^2-x+2x-4x+2-12=0
We add all the numbers together, and all the variables
x^2-3x-10=0
a = 1; b = -3; c = -10;
Δ = b2-4ac
Δ = -32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-7}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+7}{2*1}=\frac{10}{2} =5 $
| -k+20=12k-19 | | 5r=7+4r | | x-180=-84 | | x+180=-84 | | -18.1d+2.49=-14.78-2.4d | | -2(4g-3=20 | | 15-20g=-19g | | 19z-3z+18=-8+14z | | 18-16b=-1-15b | | X+1=1.01x | | 5(x-3)=10x+5 | | -6+6z=8z | | 7x/5=15 | | -9-4p=-p-6+6 | | 10v-8=2+9v | | 4w+4=2w+6 | | (x+2)(x+4)+2=x2-3(x+1)+2(x+2) | | x^2+3x-260=0 | | 14(8w-4^2)=0 | | -4(4x+2)=-16x+8 | | √(x)/4=-3 | | 0.45x+0.05(8-x)=0.10(-68) | | (0.3x-0.3)(x-0.7)=0 | | 4y-5(3y+5)=-5-3(-3-y) | | 9b+20/6=46/3 | | 91=-7(3x-1) | | 0.24(10,000)-0.05y=0.05(y+10,000) | | 3.2a+16=4a+10 | | (16x)(16x)-10x=0 | | 9.95+0.30c=35 | | 3.4q-2.7-4.6q=-0.2q-2.7 | | 16x^-10x=0 |