2(x+1)+7=3(x-2)2x

Simple and best practice solution for 2(x+1)+7=3(x-2)2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+1)+7=3(x-2)2x equation:



2(x+1)+7=3(x-2)2x
We move all terms to the left:
2(x+1)+7-(3(x-2)2x)=0
We multiply parentheses
2x-(3(x-2)2x)+2+7=0
We calculate terms in parentheses: -(3(x-2)2x), so:
3(x-2)2x
We multiply parentheses
6x^2-12x
Back to the equation:
-(6x^2-12x)
We add all the numbers together, and all the variables
2x-(6x^2-12x)+9=0
We get rid of parentheses
-6x^2+2x+12x+9=0
We add all the numbers together, and all the variables
-6x^2+14x+9=0
a = -6; b = 14; c = +9;
Δ = b2-4ac
Δ = 142-4·(-6)·9
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{103}}{2*-6}=\frac{-14-2\sqrt{103}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{103}}{2*-6}=\frac{-14+2\sqrt{103}}{-12} $

See similar equations:

| 2(r+6)=16 | | 7-8x=2x-13 | | 6(x+1)=-2(1-3x) | | t19+20=20 | | 8(1+6b)=344 | | -4x-2(6x-1)=98 | | 42=-7(z-3)= | | -168=-6(7-3n) | | -5(-5x+3)-6x=3(x+1)-8 | | 3x+12x=128 | | -5(3+5n)=-90 | | 208=6(-5n-1)+4 | | (-1/x+1)=(1/3x+3)-(2/x-4) | | -5(3y-3)+9y=6(y+4) | | b)3 | | 6×c-8-2c=-16 | | -112=-8(v+6) | | 0.02(y-4)+0.04y=0.16y-0.7 | | x^2=3,600 | | -84=6(n-8) | | 24=3(n-5)= | | -2(w+5)=2w-4+2(2w+4) | | 112=8(p+8) | | m.9m=27 | | -5/4x-5/2+1/4=-2 | | 13=2f+5= | | (4x+1)=(2x-2) | | f(-4)=2(-4)+8 | | 2x+5-8=-11 | | 5z-10+3z=14 | | 3*5=12*x | | (4w—28)+(11w+13)=180 |

Equations solver categories