If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(u+1)+7=3(u-2)2u
We move all terms to the left:
2(u+1)+7-(3(u-2)2u)=0
We multiply parentheses
2u-(3(u-2)2u)+2+7=0
We calculate terms in parentheses: -(3(u-2)2u), so:We add all the numbers together, and all the variables
3(u-2)2u
We multiply parentheses
6u^2-12u
Back to the equation:
-(6u^2-12u)
2u-(6u^2-12u)+9=0
We get rid of parentheses
-6u^2+2u+12u+9=0
We add all the numbers together, and all the variables
-6u^2+14u+9=0
a = -6; b = 14; c = +9;
Δ = b2-4ac
Δ = 142-4·(-6)·9
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{103}}{2*-6}=\frac{-14-2\sqrt{103}}{-12} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{103}}{2*-6}=\frac{-14+2\sqrt{103}}{-12} $
| (2x)³=1/64 | | 7/m-4=14/6 | | 15=c/4-2 | | x+120=65 | | (2x^)³=1/64 | | 13x+4=12x+10 | | x-5(x-1)=5+x | | -14=2/3y-6 | | 3m-7=6-6m+2 | | 4+11x=125 | | 5=3/4(12)+b | | -13-x/4=-2 | | 61-x=257 | | 2x^)³=1/64 | | d=1/2(9.8)(1.81)^2 | | -10-7v=-5v | | 25+30=x+6 | | x/3=2=5 | | g−44=3 | | -4x2+8x+25=0 | | |x-7|+12=3 | | 3(4x–10)=–18 | | -8w=-5w-3 | | 3n+4n−2=(+)n−2= | | 21+6v=9v | | -30-4x=-2(2x-15) | | 4-x/3=-13 | | 5/9a=3 | | 7-2(3x+1)=20 | | 10x=2200 | | 3(2m-7)m=-4 | | (6z-4)+118=180 |