2(8x-1)-29=8x(x-23)

Simple and best practice solution for 2(8x-1)-29=8x(x-23) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(8x-1)-29=8x(x-23) equation:



2(8x-1)-29=8x(x-23)
We move all terms to the left:
2(8x-1)-29-(8x(x-23))=0
We multiply parentheses
16x-(8x(x-23))-2-29=0
We calculate terms in parentheses: -(8x(x-23)), so:
8x(x-23)
We multiply parentheses
8x^2-184x
Back to the equation:
-(8x^2-184x)
We add all the numbers together, and all the variables
16x-(8x^2-184x)-31=0
We get rid of parentheses
-8x^2+16x+184x-31=0
We add all the numbers together, and all the variables
-8x^2+200x-31=0
a = -8; b = 200; c = -31;
Δ = b2-4ac
Δ = 2002-4·(-8)·(-31)
Δ = 39008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39008}=\sqrt{16*2438}=\sqrt{16}*\sqrt{2438}=4\sqrt{2438}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-4\sqrt{2438}}{2*-8}=\frac{-200-4\sqrt{2438}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+4\sqrt{2438}}{2*-8}=\frac{-200+4\sqrt{2438}}{-16} $

See similar equations:

| 10d=13d-18 | | 4+x/3+7/4=3-x+5/4 | | 2y+y=18y= | | 2.8+10m=7.53 | | (3x-4)^2=-16 | | 2x/5+3*x/2-7/3+1=4/5*x-1+5/2 | | c=3+32 | | c=3.25+32.50 | | (3x-8)=(2x+1) | | 7,200*y=90 | | 5x-16=9x/2 | | 3s-8=8+11(s+10) | | 0.09x0.4=0.036 | | 28=2e+6 | | 4+(7x+6)=12 | | 2.5-0.02x=-0.1 | | 1/3(y−6)=4y−2/5(2−y) | | 7.2x-0.53=-1.23+5.8x | | 5x-16=6x-4 | | 5(3x-9)=15(x-)9 | | 2/3(2x-6)=16 | | 6b=7.2-2b | | f(10)=1 | | 2x-8=5x-26 | | 10(x+0)=10(x+17)+-16 | | -50-x/7=-43 | | b-2b+8+4b=32 | | 5+2x=99 | | 10(x+2)=9(x+3)+-16 | | -5(6x-9)=-30x+45 | | 8•z=32z= | | -3x+4;x=5 |

Equations solver categories