2(3x-4)(3x+4)=(4x-1)

Simple and best practice solution for 2(3x-4)(3x+4)=(4x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x-4)(3x+4)=(4x-1) equation:



2(3x-4)(3x+4)=(4x-1)
We move all terms to the left:
2(3x-4)(3x+4)-((4x-1))=0
We use the square of the difference formula
9x^2-((4x-1))-16=0
We calculate terms in parentheses: -((4x-1)), so:
(4x-1)
We get rid of parentheses
4x-1
Back to the equation:
-(4x-1)
We get rid of parentheses
9x^2-4x+1-16=0
We add all the numbers together, and all the variables
9x^2-4x-15=0
a = 9; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·9·(-15)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{139}}{2*9}=\frac{4-2\sqrt{139}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{139}}{2*9}=\frac{4+2\sqrt{139}}{18} $

See similar equations:

| .2x-3.4=0.5(x-5) | | 6(a+3)=2(a11) | | 6y+42=-6(y-1) | | 6/5=4/x | | (a+3)=2(a11) | | l=2(11/2)-3 | | 3x^2+100x-500=0 | | 7-(4n-6)=5-5n | | -4=8-6x | | (1/5)^x=9 | | D=39+38g | | 2x2+3x+3=0 | | (17-5)(x+6)=3x-12 | | 2/y2+6/y-4=0 | | 30n^2=48+36n | | 32^x2-5x-3=1 | | 4x-2+2x=0 | | 2w^2-3=44 | | 2w^2-3=55 | | 3m+4=5m-6 | | 2w^2-4w=55 | | 5x-8=5x/3 | | Y2+10y-29=0 | | 2x+9=3(x-9) | | 2x-52——=——x63 | | 9*12=8*x | | 9*12=88x | | 3x=36+2 | | 14y=45+9y | | 28x^+7=28x | | 1.5x^2-6x-6=0 | | 3(4x-5)+8=9(2x-1) |

Equations solver categories