If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x+2)=(1/2)(12x+6)
We move all terms to the left:
2(3x+2)-((1/2)(12x+6))=0
Domain of the equation: 2)(12x+6))!=0We add all the numbers together, and all the variables
x∈R
2(3x+2)-((+1/2)(12x+6))=0
We multiply parentheses
6x-((+1/2)(12x+6))+4=0
We multiply parentheses ..
-((+12x^2+1/2*6))+6x+4=0
We multiply all the terms by the denominator
-((+12x^2+1+6x*2*6))+4*2*6))=0
We calculate terms in parentheses: -((+12x^2+1+6x*2*6)), so:We add all the numbers together, and all the variables
(+12x^2+1+6x*2*6)
We get rid of parentheses
12x^2+6x*2*6+1
Wy multiply elements
12x^2+72x*6+1
Wy multiply elements
12x^2+432x+1
Back to the equation:
-(12x^2+432x+1)
-(12x^2+432x+1)=0
We get rid of parentheses
-12x^2-432x-1=0
a = -12; b = -432; c = -1;
Δ = b2-4ac
Δ = -4322-4·(-12)·(-1)
Δ = 186576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{186576}=\sqrt{2704*69}=\sqrt{2704}*\sqrt{69}=52\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-432)-52\sqrt{69}}{2*-12}=\frac{432-52\sqrt{69}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-432)+52\sqrt{69}}{2*-12}=\frac{432+52\sqrt{69}}{-24} $
| 7(2y-5)-10y=1 | | 2x+7(4x–3)=41 | | 5x-2x=4x+7 | | 6-5-6x=-31 | | 5w/2=35 | | 10w-63=7+3w | | 6p-(4p-7)=-23 | | -2-5x=-31 | | 4-6x=-31 | | 9X-2x9=9 | | 3x-6=23-2 | | X+12x2=36 | | 4s=s+5 | | 18-5x=180 | | 5(3x+2)=7x−2 | | 1.25x=1373-x | | 1.04*9+1.25+(x-10)*0.3=x | | 5=5v-10v | | 2z=5-2 | | 10=7x-8-5x | | x•40=35 | | n+9+n=9 | | 43=-19+2x | | (x=1)^2=25 | | 8(3x-2)=8 | | 2x+6=34+4x | | 22=7x+4-4 | | (3x-5)+(5x-7)=180 | | 2+1/x=4 | | 10+9x=-80 | | 3x+10=13x | | |4x-9|=16=35 |