2(3x+1)x=3-2(2x+2)

Simple and best practice solution for 2(3x+1)x=3-2(2x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x+1)x=3-2(2x+2) equation:



2(3x+1)x=3-2(2x+2)
We move all terms to the left:
2(3x+1)x-(3-2(2x+2))=0
We multiply parentheses
6x^2+2x-(3-2(2x+2))=0
We calculate terms in parentheses: -(3-2(2x+2)), so:
3-2(2x+2)
determiningTheFunctionDomain -2(2x+2)+3
We multiply parentheses
-4x-4+3
We add all the numbers together, and all the variables
-4x-1
Back to the equation:
-(-4x-1)
We get rid of parentheses
6x^2+2x+4x+1=0
We add all the numbers together, and all the variables
6x^2+6x+1=0
a = 6; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·6·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*6}=\frac{-6-2\sqrt{3}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*6}=\frac{-6+2\sqrt{3}}{12} $

See similar equations:

| 8x^2-40=10 | | 5=x/4-1 | | x+8/12=1-3/4*x | | 5x+24=2x+76 | | x+8/12=1-3x/4x | | a/9=18 | | p-5-5p=-17 | | 14=10-6x | | H(t)=20t-16t^2 | | X+90+4x=180 | | b+20/4-96=-48 | | 8x+9+10x-5=180 | | X^3+3x-88=0 | | b+32/4-96=-48 | | 7y+9y=15y | | 3/5x+22=-28 | | Y=24x+182 | | 7+3p=-1-5p | | x+x+4+x+2=66x | | 5x+3x=+7x | | 4/5-h=-1/2 | | x+x+4x+x+2=66x | | 114=2(2w-6)+2w | | 0=-4u^2-17u-4 | | n=24+7 | | 3x-6+x=120 | | 2x/3=24+6x | | 5/6=4m/9-1/3+2m/9 | | -3/5m+-2=66 | | -(1+6n)=-13-2n | | (3q+1)+4=3(q+4)-7 | | 3/5s=23/7 |

Equations solver categories