2(3x)(x+10)=(4x+5x)(2x-4)

Simple and best practice solution for 2(3x)(x+10)=(4x+5x)(2x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x)(x+10)=(4x+5x)(2x-4) equation:



2(3x)(x+10)=(4x+5x)(2x-4)
We move all terms to the left:
2(3x)(x+10)-((4x+5x)(2x-4))=0
We add all the numbers together, and all the variables
23x(x+10)-((+9x)(2x-4))=0
We multiply parentheses
23x^2+230x-((+9x)(2x-4))=0
We multiply parentheses ..
23x^2-((+18x^2-36x))+230x=0
We calculate terms in parentheses: -((+18x^2-36x)), so:
(+18x^2-36x)
We get rid of parentheses
18x^2-36x
Back to the equation:
-(18x^2-36x)
We add all the numbers together, and all the variables
23x^2+230x-(18x^2-36x)=0
We get rid of parentheses
23x^2-18x^2+230x+36x=0
We add all the numbers together, and all the variables
5x^2+266x=0
a = 5; b = 266; c = 0;
Δ = b2-4ac
Δ = 2662-4·5·0
Δ = 70756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{70756}=266$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(266)-266}{2*5}=\frac{-532}{10} =-53+1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(266)+266}{2*5}=\frac{0}{10} =0 $

See similar equations:

| X2-2x=10 | | 14.1+x=90 | | F(5)=3.14r2 | | -3t^2+18t-21=0 | | 11=n/2+8 | | 5t+4t=-6 | | 50.1+x=180 | | (X+x+2x)x=3 | | -5x-8=3x+56 | | t-9=26 | | 4+x=10x-14 | | (3z+23z)z=5 | | 3z+23zz=5 | | -5x+2(x+3)=-12 | | 7(x+1)+3x= | | 45-11x=4x | | 6x^2-60x=18x^2-36x | | 13=10+-2/q | | 8-6a=6+20-15a | | 6x^2+60=18x^2-36x | | -9+5x=-16 | | 4(r-61)=100 | | 180=120+(b+44) | | f/9+55=63 | | u/2-14=-11 | | M^2-23m+22=0 | | 7+3(x+1)=37 | | -7m+5m=3-7m-8 | | 3^5x=3^10 | | 3x-2=-1/2(4x-6 | | 15z=17z+16 | | 1-4x=-8-7x |

Equations solver categories