If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3z+23z)z=5
We move all terms to the left:
(3z+23z)z-(5)=0
We add all the numbers together, and all the variables
(+26z)z-5=0
We multiply parentheses
26z^2-5=0
a = 26; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·26·(-5)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*26}=\frac{0-2\sqrt{130}}{52} =-\frac{2\sqrt{130}}{52} =-\frac{\sqrt{130}}{26} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*26}=\frac{0+2\sqrt{130}}{52} =\frac{2\sqrt{130}}{52} =\frac{\sqrt{130}}{26} $
| 3z+23zz=5 | | -5x+2(x+3)=-12 | | 7(x+1)+3x= | | 45-11x=4x | | 6x^2-60x=18x^2-36x | | 13=10+-2/q | | 8-6a=6+20-15a | | 6x^2+60=18x^2-36x | | -9+5x=-16 | | 4(r-61)=100 | | 180=120+(b+44) | | f/9+55=63 | | u/2-14=-11 | | M^2-23m+22=0 | | 7+3(x+1)=37 | | -7m+5m=3-7m-8 | | 3^5x=3^10 | | 3x-2=-1/2(4x-6 | | 15z=17z+16 | | 1-4x=-8-7x | | 27-5×x=83 | | 3r+4=7r+5 | | -2(n-3)=4n-2-2n | | 7x(7x+5)=4875 | | 3-2(2x+5)=10 | | 99-7w=8w+8 | | 7x+5=13+8x | | 18y-1/16=y | | 87=3(b-40) | | -3(x-5)=-4(2x+5) | | 104=3(18.50)+2x | | 1/2(6x-8)=7/5(x-5)-1/5) |