2(1x+4)=-4x(-1x+4)

Simple and best practice solution for 2(1x+4)=-4x(-1x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(1x+4)=-4x(-1x+4) equation:



2(1x+4)=-4x(-1x+4)
We move all terms to the left:
2(1x+4)-(-4x(-1x+4))=0
We add all the numbers together, and all the variables
2(x+4)-(-4x(-1x+4))=0
We multiply parentheses
2x-(-4x(-1x+4))+8=0
We calculate terms in parentheses: -(-4x(-1x+4)), so:
-4x(-1x+4)
We multiply parentheses
4x^2-16x
Back to the equation:
-(4x^2-16x)
We get rid of parentheses
-4x^2+2x+16x+8=0
We add all the numbers together, and all the variables
-4x^2+18x+8=0
a = -4; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·(-4)·8
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{113}}{2*-4}=\frac{-18-2\sqrt{113}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{113}}{2*-4}=\frac{-18+2\sqrt{113}}{-8} $

See similar equations:

| 1/3x-11=-1 | | -6f+1=10-7f | | 10n=4-1- | | 15+15=-3(9x-10) | | 6(2x-9)=13x | | 125m-100+42,750=46,125-200m | | -8m-12=20* | | (6x-4)(x+17)=180 | | -5x-36=-3(x+28) | | -2+5r=-12 | | 40/60=x/15 | | 11x-2=75x+ | | (x-7)^12=49 | | 2x-1=0.75x=9 | | 10x+2(x-6)=3(4x-4)5x+3(x-3)=6x-11+2x | | 3x−21=2x−13 | | -58=5(6+x)+6x | | R=10+3x | | 11.5=15.3+p | | -12+6=-2(x+1 | | 8y-8=37–7y | | (2a-3)(3a+2)=14a+14 | | 3/7+2/5x=-1/5x=1 | | (11x-15)+(5x-13)=189 | | x/3=7x/(12x-15) | | |2x-1|+8=x | | 75/20=w/2,500 | | 373.35=210+0.55x | | 4x+3(4x+14)=154 | | 18.75=3r | | 9(x+5)+6=9x+9 | | -5-6(-4n-7)=-38-n |

Equations solver categories