If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+2(x-6)=3(4x-4)5x+3(x-3)=6x-11+2x
We move all terms to the left:
10x+2(x-6)-(3(4x-4)5x+3(x-3))=0
We multiply parentheses
10x+2x-(3(4x-4)5x+3(x-3))-12=0
We calculate terms in parentheses: -(3(4x-4)5x+3(x-3)), so:We add all the numbers together, and all the variables
3(4x-4)5x+3(x-3)
We multiply parentheses
60x^2-60x+3x-9
We add all the numbers together, and all the variables
60x^2-57x-9
Back to the equation:
-(60x^2-57x-9)
12x-(60x^2-57x-9)-12=0
We get rid of parentheses
-60x^2+12x+57x+9-12=0
We add all the numbers together, and all the variables
-60x^2+69x-3=0
a = -60; b = 69; c = -3;
Δ = b2-4ac
Δ = 692-4·(-60)·(-3)
Δ = 4041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4041}=\sqrt{9*449}=\sqrt{9}*\sqrt{449}=3\sqrt{449}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-3\sqrt{449}}{2*-60}=\frac{-69-3\sqrt{449}}{-120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+3\sqrt{449}}{2*-60}=\frac{-69+3\sqrt{449}}{-120} $
| 3x−21=2x−13 | | -58=5(6+x)+6x | | R=10+3x | | 11.5=15.3+p | | -12+6=-2(x+1 | | 8y-8=37–7y | | (2a-3)(3a+2)=14a+14 | | 3/7+2/5x=-1/5x=1 | | (11x-15)+(5x-13)=189 | | x/3=7x/(12x-15) | | |2x-1|+8=x | | 75/20=w/2,500 | | 373.35=210+0.55x | | 4x+3(4x+14)=154 | | 18.75=3r | | 9(x+5)+6=9x+9 | | -5-6(-4n-7)=-38-n | | 8x-10x=-50 | | 10-4x=-9x10−4x=−9x | | 7-4j=-2j-9 | | 5(v-3)-6=-3(-9v+9)-6v | | 1/2x+1/5=-5(5/6x-3) | | z+19=38 | | 8(x-6)-8=-56 | | e-8=20 | | 3(x+7)+12=2(-x+4)-5x | | -2r-5=-7 | | T+4t-2t+t+3t=7 | | m^2-5m-8=0 | | 2/1=5/d | | 2y-9y-35y=0 | | 70+6x+10=90 |