2(1/3x-3)+2=4/5x-2

Simple and best practice solution for 2(1/3x-3)+2=4/5x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(1/3x-3)+2=4/5x-2 equation:



2(1/3x-3)+2=4/5x-2
We move all terms to the left:
2(1/3x-3)+2-(4/5x-2)=0
Domain of the equation: 3x-3)!=0
x∈R
Domain of the equation: 5x-2)!=0
x∈R
We multiply parentheses
2x-(4/5x-2)-6+2=0
We get rid of parentheses
2x-4/5x+2-6+2=0
We multiply all the terms by the denominator
2x*5x+2*5x-6*5x+2*5x-4=0
Wy multiply elements
10x^2+10x-30x+10x-4=0
We add all the numbers together, and all the variables
10x^2-10x-4=0
a = 10; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·10·(-4)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{65}}{2*10}=\frac{10-2\sqrt{65}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{65}}{2*10}=\frac{10+2\sqrt{65}}{20} $

See similar equations:

| 3x^2-4+2x=7x+2 | | 8/32=22/n | | 6(c−12)=−6 | | 17j=16+16j | | 3^2x-10*3^x+9=0 | | 24a–22=4(1–6a) | | .5=x/15 | | 6v-6+3v=24+6 | | 5x+9=-3x-12-5x | | 14x+30-8x=6(x+5) | | 4x-2(3x+7)=-2x-7 | | 8w+1=20+9w | | -10+6-x=-1 | | (2x+6)=(x+9)=180 | | 6m-(m-4)=33 | | 15•1/3•n=350 | | 4x-2(3x+7)=-4x-7 | | -1(x+6)+12=5x-18 | | -6d-2=-9d-2 | | 2x+x^2-9=90 | | 6x^2+2x-2=1 | | 180=(13y-10)+(3y) | | 2f=-6+3f | | 4(2r+1)-3(2r5)=29 | | -2b+2(b+5)=7+3(11-5b) | | -10+6-x=1 | | 4/x-2=14 | | (8x-14)=(7x-1)=180 | | -173.46=11.8x | | 17=n/4+15 | | 14n+1=8n-7(2-3n) | | 2(b+2.6)=7.6 |

Equations solver categories