If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(1/3r)+1/3r+r=324
We move all terms to the left:
2(1/3r)+1/3r+r-(324)=0
Domain of the equation: 3r)!=0
r!=0/1
r!=0
r∈R
Domain of the equation: 3r!=0We add all the numbers together, and all the variables
r!=0/3
r!=0
r∈R
2(+1/3r)+1/3r+r-324=0
We add all the numbers together, and all the variables
r+2(+1/3r)+1/3r-324=0
We multiply parentheses
r+2r+1/3r-324=0
We multiply all the terms by the denominator
r*3r+2r*3r-324*3r+1=0
Wy multiply elements
3r^2+6r^2-972r+1=0
We add all the numbers together, and all the variables
9r^2-972r+1=0
a = 9; b = -972; c = +1;
Δ = b2-4ac
Δ = -9722-4·9·1
Δ = 944748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944748}=\sqrt{36*26243}=\sqrt{36}*\sqrt{26243}=6\sqrt{26243}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-972)-6\sqrt{26243}}{2*9}=\frac{972-6\sqrt{26243}}{18} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-972)+6\sqrt{26243}}{2*9}=\frac{972+6\sqrt{26243}}{18} $
| (2m-3)(m-2)=0 | | (4x+1)^2=81 | | 23*30-c=583 | | (4x+2)^2=81 | | x/3+38=338 | | 2x2-9x-221=0 | | x/5-38+313=371 | | 3x2+40x-28=0 | | 3x*2+2=77 | | 8r^2-10r-12=0 | | (c-1)(c-1)=1 | | 6(-2)-y=3 | | -18-y=3 | | 5^x^2=25^7x-24 | | 12x-8=72x+36 | | 3x2+39x+180=0 | | 4a^2-14a-30^2=0 | | 13(4x3)=8.2 | | 10n^2+6n-4=0 | | (y+5)-(y+4)=6y | | 17.2y-137.6=25.8y-206.4 | | 17.2y-137.6=25.8y-20.6.4 | | 16=16-6x | | 8/5+2x=3/2 | | -8+3y=24 | | 16x^2=120x | | 9w-3-4w=7w-19 | | R=-3s+4 | | 44=2r(3.14) | | 40-(3x+6)=3(x+2)+x | | 4.4*10^-4=x^2/(0.37-x) | | x/78000*10^x=0.45 |