If it's not what You are looking for type in the equation solver your own equation and let us solve it.
190=(w+14)(w+10)
We move all terms to the left:
190-((w+14)(w+10))=0
We multiply parentheses ..
-((+w^2+10w+14w+140))+190=0
We calculate terms in parentheses: -((+w^2+10w+14w+140)), so:We get rid of parentheses
(+w^2+10w+14w+140)
We get rid of parentheses
w^2+10w+14w+140
We add all the numbers together, and all the variables
w^2+24w+140
Back to the equation:
-(w^2+24w+140)
-w^2-24w-140+190=0
We add all the numbers together, and all the variables
-1w^2-24w+50=0
a = -1; b = -24; c = +50;
Δ = b2-4ac
Δ = -242-4·(-1)·50
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{194}}{2*-1}=\frac{24-2\sqrt{194}}{-2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{194}}{2*-1}=\frac{24+2\sqrt{194}}{-2} $
| 63=x-7 | | 5(n−8)=−40+5n | | -31=12x+1 | | h/0.61=5 | | 53,927–u=3,483,511; | | 4x^2+44x-112=0 | | 72+8=x/6 | | 8+6w=208 | | 6z+3=9+4z | | 4(5x-7)=9 | | 4x+8x5=24 | | -24=-4+2v | | 20s=30 | | -84=8r-4 | | 30+60=45x | | 180=-10z | | 0.4x-x=1 | | 3/4x+8=16 | | 22=k/2+11 | | -5a+54=5(-4a+14.89) | | 3(p+2)-7=-25 | | 4=-6(-2x+4)-9x | | q2+32q=0 | | -24.26674+0.1x=-1.93(1+4.2x) | | h2-9=0 | | 0.5x+x=2.5 | | 3(u+5)+4=37 | | 81x2-18x+1=0 | | 7-3(-6-6j)=-119 | | -5=4j | | 6675n-4678=1378 | | -12-6x=6(x-50 |