If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-18x+1=0
a = 81; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·81·1
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{18}{162}=1/9$
| 7-3(-6-6j)=-119 | | -5=4j | | 6675n-4678=1378 | | -12-6x=6(x-50 | | -3(-2h-5)=27 | | 8x+8+6x=6x=16 | | t2-48t=0 | | 9=x-72 | | -2(-5-6j)=106 | | 32j2+25j=0 | | -5(3x+8)=-10 | | 5+20x+2x=27 | | 31x+3=x | | 48=6+x | | 8•(2.8/w)=3.2 | | 47h2+19h=0 | | 110=x-11 | | 10=18^4t | | 4x+16=7x=3x+11 | | 39x=26 | | 2x+6+100=180 | | 2n2+25n-13=0 | | 39+x=26 | | g2+4g+3=0 | | 1/3h=h=2 | | 2.4(h+1)=9.6 | | (z-6)+3z+(z+1)=180 | | x=24-8 | | 7x+15=12x+30 | | 7(v+5)=3v+19 | | 13.9=2(p-13)-(-5.9) | | -10=2/3v |