If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19-1/28(3x)=12-1/28(2x)
We move all terms to the left:
19-1/28(3x)-(12-1/28(2x))=0
Domain of the equation: 283x!=0
x!=0/283
x!=0
x∈R
Domain of the equation: 282x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/283x-(-1/282x+12)+19=0
We get rid of parentheses
-1/283x+1/282x-12+19=0
We calculate fractions
(-282x)/79806x^2+283x/79806x^2-12+19=0
We add all the numbers together, and all the variables
(-282x)/79806x^2+283x/79806x^2+7=0
We multiply all the terms by the denominator
(-282x)+283x+7*79806x^2=0
We add all the numbers together, and all the variables
283x+(-282x)+7*79806x^2=0
Wy multiply elements
558642x^2+283x+(-282x)=0
We get rid of parentheses
558642x^2+283x-282x=0
We add all the numbers together, and all the variables
558642x^2+x=0
a = 558642; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·558642·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*558642}=\frac{-2}{1117284} =-1/558642 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*558642}=\frac{0}{1117284} =0 $
| 6(3x+4)=2(5x+3) | | 8m-6m=-12 | | -4x-10=-1-8x | | Q(m)=7m²-12+4m | | 1y/15-5=10 | | x{3}-13x{2}+40x=0 | | P(m)=6m-7 | | y^2-16y-20=0 | | 14x-(8x-6)=54 | | -3/2+2/3v=-2/5 | | 3.5x10−8=(x)(x)/(0.2−x) | | x{2}-6x=27 | | 21÷(x+2)=(4÷x)+1 | | 4x-4(3-2x)=3(x-5)-51 | | x^3−5x^2+8x−4=0. | | 4(7x=5)=6(4x-2) | | x3−5x2+8x−4=0. | | x+4/3=31/2 | | 8p=14=5p=27 | | 7x^2+17-2=0 | | |5x+6|+3=10 | | 5+7(x-1)=8x+12 | | 7x^2+16-4=0 | | ((x-5)/2)+(2/(x+5))=17/4 | | (4x-5)(16x{2}-40x+25)=0 | | 5x^2+16x-4=0 | | 4-(64/x^2)=0 | | 4z+6=0 | | z^-14=-11z | | 64=32x=55-35x | | z^-14=-11 | | 22v-17=12v+8 |