If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-30x=0
a = 18; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·18·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*18}=\frac{60}{36} =1+2/3 $
| 3a2+4a=1 | | 0/12x=-33/12 | | 2=6−2c | | 1/2x+10/2=7(x-1) | | 20-2x-12-2=-7x+4x+8 | | 0x+33/12=0 | | 7y-52=816 | | 7/2m=1=-10 | | -5x+120=15 | | 7y^2+11y+21=0 | | (4x+10x-2)/2=13 | | 2f−7=3 | | 6n-4=188 | | 15=9+3b | | 3(x-6)-2(x+5)=-7 | | 3r+3=15 | | 3x-15=8x+5 | | 60+(2x+4)=180 | | (x+1/7)^2=1/49 | | 5x-12=3x-34 | | 13n-1=8 | | 2x+4=90+60 | | 7/9x=1/6x | | 60+(2x+4)=90 | | 9+5x/2=8 | | 2y+7=yy= | | 6x2+29x-5=0 | | 42+2x=90 | | 25x+7=132 | | 90+42=2x | | u2-2u-3=0 | | 6x+4=(3x+8} |