If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+29x-5=0
a = 6; b = 29; c = -5;
Δ = b2-4ac
Δ = 292-4·6·(-5)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-31}{2*6}=\frac{-60}{12} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+31}{2*6}=\frac{2}{12} =1/6 $
| 42+2x=90 | | 25x+7=132 | | 90+42=2x | | u2-2u-3=0 | | 6x+4=(3x+8} | | 4a2-37a+9=0 | | X-12×2x+15=90 | | 2d-15=17 | | 4x+-8=0 | | 14n-6=16+10+16n | | 506=(1/x)*60 | | 5-13z=-10-14z | | x-4/6+2x-5/8=5x/10-5x-6/12 | | 10.24=v/4 | | (3x-40)/2=x | | -9g=-10g-13 | | -4n-3n-2=12 | | 12=4/3x | | 1/3=x3/4 | | 6x+1=3×-11 | | 2x2−2x−180=0 | | -1=2n-3n+3 | | 180+2x=40 | | -7d=50+3d | | x+(3/5)=2x-80 | | 2=3j−4 | | 16j-19+5j=20+18j | | 7(-x)=-50(3x) | | 180+42=2x | | x^2+7x-53=11/3 | | 2y−3=5 | | -2n-1n+4=13 |