If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+3x=1
We move all terms to the left:
18x^2+3x-(1)=0
a = 18; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·18·(-1)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*18}=\frac{-12}{36} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*18}=\frac{6}{36} =1/6 $
| A=3(2x-5)-4(x-3) | | 10x+1=7x-49 | | 2(x+3)=8(x-6) | | 5(x+4)=6x-5= | | a+(-13)=-22 | | a+(-16)=-48 | | a+(-16)=-4 | | a+(-16)=-22 | | a+(-16)=4 | | 5x=10-10x | | a+(-13)=22 | | 20n^2-36n+18=0 | | x=39-x/12 | | 5x^2+5x+2=25 | | A+2=5a | | x-2x+4=24 | | 11x+10=9x*3 | | 2x+38+2x+32=180 | | 2x+15+4x+25+x-10=180 | | (4x-35)/2=3x | | 6x+12=9x+36 | | -4y/5-10=18 | | 18a=91 | | 2(x+5)+3x=20-5x | | 6a-10=3a+11 | | 5c^+25c=0 | | 108=3x-12 | | 0.5x-15+2x-30=180 | | 0.12-2.5x=-0.8 | | 3x-3/5-2=2/5 | | 4x+90+5x-9=180 | | 100-x=-58 |