If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x/3x+1-3=1/x-2+3
We move all terms to the left:
18x/3x+1-3-(1/x-2+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x-2+3)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x+3)!=2
x∈R
18x/3x-(1/x+1)+1-3=0
We add all the numbers together, and all the variables
18x/3x-(1/x+1)-2=0
We get rid of parentheses
18x/3x-1/x-1-2=0
We calculate fractions
18x^2/3x^2+(-3x)/3x^2-1-2=0
We add all the numbers together, and all the variables
18x^2/3x^2+(-3x)/3x^2-3=0
We multiply all the terms by the denominator
18x^2+(-3x)-3*3x^2=0
Wy multiply elements
18x^2-9x^2+(-3x)=0
We get rid of parentheses
18x^2-9x^2-3x=0
We add all the numbers together, and all the variables
9x^2-3x=0
a = 9; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·9·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*9}=\frac{6}{18} =1/3 $
| 9+2x*2=3*12+x | | 425=607-t | | 14g+52=780 | | W(2w-4)=336 | | -8x=93=37 | | 6=q+89/23 | | e2=e-e2 | | 12x=10x-6 | | 13e+5=5 | | 3(d+4)=3d+12 | | 339-r=258 | | t-63=0 | | 20x+97=3 | | 234-m=221 | | M^2+11m+36=0 | | 10+2n+4n-6=20 | | 39-k=27 | | 9b-27=36 | | 4=m/5-1 | | 5=x21/3 | | x+9-2x=2+2 | | 4x^2+65=85 | | 58=18+5u | | x-4.08=1.2 | | 2x+5x+8=50 | | 5x-4+16=0 | | 2=v/6-5 | | 5/9=x+4/9 | | x=1.7=9 | | 4x+5x+10=7 | | 6x-2x-5=9-2 | | 94-g=53 |