180=2c+6+3c+4+1/2c+5

Simple and best practice solution for 180=2c+6+3c+4+1/2c+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=2c+6+3c+4+1/2c+5 equation:



180=2c+6+3c+4+1/2c+5
We move all terms to the left:
180-(2c+6+3c+4+1/2c+5)=0
Domain of the equation: 2c+5)!=0
c∈R
We add all the numbers together, and all the variables
-(5c+1/2c+15)+180=0
We get rid of parentheses
-5c-1/2c-15+180=0
We multiply all the terms by the denominator
-5c*2c-15*2c+180*2c-1=0
Wy multiply elements
-10c^2-30c+360c-1=0
We add all the numbers together, and all the variables
-10c^2+330c-1=0
a = -10; b = 330; c = -1;
Δ = b2-4ac
Δ = 3302-4·(-10)·(-1)
Δ = 108860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108860}=\sqrt{4*27215}=\sqrt{4}*\sqrt{27215}=2\sqrt{27215}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(330)-2\sqrt{27215}}{2*-10}=\frac{-330-2\sqrt{27215}}{-20} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(330)+2\sqrt{27215}}{2*-10}=\frac{-330+2\sqrt{27215}}{-20} $

See similar equations:

| 5(2b+130=185 | | 5x-12x=-21 | | 13x+23=4x-19 | | t-97=54 | | 0+(-7)=x | | 19+6x=9x+4 | | -16+x=45 | | (7x-9)(5x-11)=(9x+1) | | Y/7=2r7 | | 100-8x=2x | | 26–3.50x=8.5 | | (7x-9)(5x-11)=9x+1 | | 16x-1=6x+3 | | 26–3.50x=8.50 | | 9^x=1/6561 | | 24-(3c+4)=2c+8+c | | 4(m-13)-7=5 | | 20x3=10x+5 | | 8(1+5x)+40=13+5x | | 6^y=1/36 | | -4=d+3/ | | 2x+27=4x+29 | | X+90=3x-1 | | -37=x-9 | | 525=x2-4x-(2x-4x) | | -x²-3x-6=0 | | 6(y-10)=6 | | 20x+5=23x | | 3x-1=x+90 | | 6(y-10)=6( | | 52+x+x+77+75=180 | | x2+x3=56 |

Equations solver categories