525=x2-4x-(2x-4x)

Simple and best practice solution for 525=x2-4x-(2x-4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 525=x2-4x-(2x-4x) equation:



525=x2-4x-(2x-4x)
We move all terms to the left:
525-(x2-4x-(2x-4x))=0
We add all the numbers together, and all the variables
-(x2-4x-(-2x))+525=0
We calculate terms in parentheses: -(x2-4x-(-2x)), so:
x2-4x-(-2x)
We add all the numbers together, and all the variables
x^2-4x-(-2x)
We get rid of parentheses
x^2-4x+2x
We add all the numbers together, and all the variables
x^2-2x
Back to the equation:
-(x^2-2x)
We get rid of parentheses
-x^2+2x+525=0
We add all the numbers together, and all the variables
-1x^2+2x+525=0
a = -1; b = 2; c = +525;
Δ = b2-4ac
Δ = 22-4·(-1)·525
Δ = 2104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2104}=\sqrt{4*526}=\sqrt{4}*\sqrt{526}=2\sqrt{526}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{526}}{2*-1}=\frac{-2-2\sqrt{526}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{526}}{2*-1}=\frac{-2+2\sqrt{526}}{-2} $

See similar equations:

| -x²-3x-6=0 | | 6(y-10)=6 | | 20x+5=23x | | 3x-1=x+90 | | 6(y-10)=6( | | 52+x+x+77+75=180 | | x2+x3=56 | | 1.1-1.3=0.3x+5.1 | | 2^m=1/8 | | 36+3a=7+4(a+7) | | 3-(-6)=x | | x+8+120=360+2x | | -2r+9=-35 | | 3.3x-264-x=1.2 | | 3x-1=-5x-65 | | 7(4+y)=6(y-6) | | 2(3x+7)-4=6x+10 | | (15−x)4=10 | | 4(-4-7)=-28-16k | | -7(z-3)=-8z | | 4x-72=12 | | 112-w=161 | | (9x+1)(7x-9)=(5x-11 | | 2|-2x-7|=8 | | 3p^2-5p+9=0 | | 191=-w+7 | | 1.1.x+1.2x-5.4=-10 | | 1/6x=2/3x+1 | | 6(4+12)=8(3s-14) | | o/5-14=8 | | 15a-4.5+1/2=1.2+8 | | -7+11g=9-21g |

Equations solver categories