180=1/2x+25+x+x

Simple and best practice solution for 180=1/2x+25+x+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=1/2x+25+x+x equation:



180=1/2x+25+x+x
We move all terms to the left:
180-(1/2x+25+x+x)=0
Domain of the equation: 2x+25+x+x)!=0
We move all terms containing x to the left, all other terms to the right
2x+x+x)!=-25
x∈R
We add all the numbers together, and all the variables
-(2x+1/2x+25)+180=0
We get rid of parentheses
-2x-1/2x-25+180=0
We multiply all the terms by the denominator
-2x*2x-25*2x+180*2x-1=0
Wy multiply elements
-4x^2-50x+360x-1=0
We add all the numbers together, and all the variables
-4x^2+310x-1=0
a = -4; b = 310; c = -1;
Δ = b2-4ac
Δ = 3102-4·(-4)·(-1)
Δ = 96084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96084}=\sqrt{36*2669}=\sqrt{36}*\sqrt{2669}=6\sqrt{2669}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(310)-6\sqrt{2669}}{2*-4}=\frac{-310-6\sqrt{2669}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(310)+6\sqrt{2669}}{2*-4}=\frac{-310+6\sqrt{2669}}{-8} $

See similar equations:

| 32-2v=10 | | 17=3j+2 | | 28x+2,210=45x | | 64h/7=6 | | 7(8x+2)-3=21 | | x+1+x+57=180 | | 2.5x+25=180 | | x+4+x-18=180 | | X=2/7x-5 | | 7/8x+3=4 | | 4x-3-2x=2x | | 15.95+91x=255.28 | | 8-6x+12=5+3x-4x | | 2y+12=42 | | 9y+17=10y | | (x+2)x=483 | | y=13/9(20) | | 28=-7(6a+2) | | 6(2+y=3 | | 3(2x-4)=8+2x=6 | | Y=0.9x+5.05 | | ❤️-8=-3+m/3 | | -4c-12=8c+36 | | 67=9/5c+32 | | -8x+13=2x-17 | | 5r-13-6r=3r+15-16 | | 4m-9=-6m+6 | | -6w+11=5w-33 | | 4n-14-2n-6=-15n | | 2x+7=-3-8x | | -2+2x=6+(-3x) | | -4(x+2)=x-7+2(2x+1) |

Equations solver categories