180=(x+30)+x(5x+10)

Simple and best practice solution for 180=(x+30)+x(5x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(x+30)+x(5x+10) equation:



180=(x+30)+x(5x+10)
We move all terms to the left:
180-((x+30)+x(5x+10))=0
We calculate terms in parentheses: -((x+30)+x(5x+10)), so:
(x+30)+x(5x+10)
We multiply parentheses
5x^2+(x+30)+10x
We get rid of parentheses
5x^2+x+10x+30
We add all the numbers together, and all the variables
5x^2+11x+30
Back to the equation:
-(5x^2+11x+30)
We get rid of parentheses
-5x^2-11x-30+180=0
We add all the numbers together, and all the variables
-5x^2-11x+150=0
a = -5; b = -11; c = +150;
Δ = b2-4ac
Δ = -112-4·(-5)·150
Δ = 3121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{3121}}{2*-5}=\frac{11-\sqrt{3121}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{3121}}{2*-5}=\frac{11+\sqrt{3121}}{-10} $

See similar equations:

| (x)(2x+2)=60 | | 16=-6k | | 9x-4=x+19+18 | | 10x-(8)/(3)-4x=6x | | 13z-5z-6z+4z-z=5 | | Y-(2y-7)=76 | | 19x-15=10x-8+11 | | x2+8x+16= | | 15q+11q+-19q+-5q=-12 | | 4+3v=5v | | 14x-3=9x+7 | | b3+4=7;9 | | 24-4n=2(n+2)-n | | 5/7b+6=16 | | -x+5x+4=3(2x-1) | | 7-b-3=-3b+5 | | 25^3=(b^2(3))÷3 | | 3,000/x+50=2,000/x+100 | | 1/5m=1/3(2m-12) | | 2x^2+6x=122 | | 42=40*x | | 20=5(v-6) | | 9x-10=x+17+5x | | 8+x=4x-37 | | |4x|=32 | | 5(x+2)÷3-x-1÷3=1 | | -7(a+8)+2=-21+4a | | 5(5,+1)=25x-7 | | 1-7w=-41 | | n-8=16-2n | | (1/4*x)*20=20/4*x | | 2x+14=-4+10 |

Equations solver categories