If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(4x+20)(x-10)
We move all terms to the left:
180-((4x+20)(x-10))=0
We multiply parentheses ..
-((+4x^2-40x+20x-200))+180=0
We calculate terms in parentheses: -((+4x^2-40x+20x-200)), so:We get rid of parentheses
(+4x^2-40x+20x-200)
We get rid of parentheses
4x^2-40x+20x-200
We add all the numbers together, and all the variables
4x^2-20x-200
Back to the equation:
-(4x^2-20x-200)
-4x^2+20x+200+180=0
We add all the numbers together, and all the variables
-4x^2+20x+380=0
a = -4; b = 20; c = +380;
Δ = b2-4ac
Δ = 202-4·(-4)·380
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-36\sqrt{5}}{2*-4}=\frac{-20-36\sqrt{5}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+36\sqrt{5}}{2*-4}=\frac{-20+36\sqrt{5}}{-8} $
| x+35=22•2 | | 2x=600-x | | 12(x-5)=-(x-30) | | 2÷x=-5-28 | | 18x-3=-5x+13 | | -5(8m-3)=0 | | x+35=22x2 | | 81÷z=27 | | 3/6+1/2=x | | (-x)=-72 | | 9^x-7.3^x-18=0 | | 8(2x-1)=0 | | 3x+2x+x+x+10=180 | | 3(h-3.2)+5=2(h-3.2)+h+1.8 | | 8x-16-12x-15=0 | | 4-5x=11+2 | | 8x+8/2x+3=0 | | 4(3b+1)=0 | | 4-5x=77+2 | | (3x)^2/8+2=20 | | 0x+6=7x+8 | | -2(8v-5)+5v=7(v+2) | | 2v-7+4(2v+2)=-5(v+1) | | 2x^2+1=4x^2+4x+1 | | (k-7)2=4 | | -8x-5=-109 | | 2x^2+2=2x^2-4x+5 | | Y=10/9x+5 | | 7(3n-3)=42 | | 6x4+7x2=124 | | 2x^2+4x+2=2x^2+1 | | 4000=m/20 |