180=(3x+5)(10x-7)

Simple and best practice solution for 180=(3x+5)(10x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(3x+5)(10x-7) equation:



180=(3x+5)(10x-7)
We move all terms to the left:
180-((3x+5)(10x-7))=0
We multiply parentheses ..
-((+30x^2-21x+50x-35))+180=0
We calculate terms in parentheses: -((+30x^2-21x+50x-35)), so:
(+30x^2-21x+50x-35)
We get rid of parentheses
30x^2-21x+50x-35
We add all the numbers together, and all the variables
30x^2+29x-35
Back to the equation:
-(30x^2+29x-35)
We get rid of parentheses
-30x^2-29x+35+180=0
We add all the numbers together, and all the variables
-30x^2-29x+215=0
a = -30; b = -29; c = +215;
Δ = b2-4ac
Δ = -292-4·(-30)·215
Δ = 26641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-\sqrt{26641}}{2*-30}=\frac{29-\sqrt{26641}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+\sqrt{26641}}{2*-30}=\frac{29+\sqrt{26641}}{-60} $

See similar equations:

| 15-5(3-2n)=4(n-3) | | 9x-28=6x-13 | | 6x-2(6-5x)+3x=10-4(2-x) | | 8)-18=4y+10 | | x–2.1=2.4 | | 3=|g+7| | | 27x2+36x+12=0 | | -2x+4=-3x-17 | | 3(t+5)=5t+25 | | 5x-6+x=18 | | 8m+4=1/3(6m-12) | | 5x+8(25)=400 | | 5(m-10)+(-6m-3)=6(5m-1 | | k=4=-14+3k=7k | | 2/3(x-4=1/4(x+2) | | 75-3.5Y-4Y=4y6 | | 18(2x-3)=-6(x-26) | | 3x+1=1x-6 | | 4a+9=9a-21 | | -4x(2x-12)=28 | | z+23+10z+z+25=180 | | 23–x=19.5 | | -4(4+2v)=-56 | | -3(x+5)+2(2x+1)=27 | | M+12+2m+90=180 | | (4x+3x=2)+1 | | b-1=-21 | | x=(4x+3x=2)+1 | | X+(x-0,6x)=10000 | | 7(-n+2)=8-8n | | -4p+3(1+5p)=-52 | | x+27+x=67 |

Equations solver categories