If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(2x+4)(2x-9)
We move all terms to the left:
180-((2x+4)(2x-9))=0
We multiply parentheses ..
-((+4x^2-18x+8x-36))+180=0
We calculate terms in parentheses: -((+4x^2-18x+8x-36)), so:We get rid of parentheses
(+4x^2-18x+8x-36)
We get rid of parentheses
4x^2-18x+8x-36
We add all the numbers together, and all the variables
4x^2-10x-36
Back to the equation:
-(4x^2-10x-36)
-4x^2+10x+36+180=0
We add all the numbers together, and all the variables
-4x^2+10x+216=0
a = -4; b = 10; c = +216;
Δ = b2-4ac
Δ = 102-4·(-4)·216
Δ = 3556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3556}=\sqrt{4*889}=\sqrt{4}*\sqrt{889}=2\sqrt{889}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{889}}{2*-4}=\frac{-10-2\sqrt{889}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{889}}{2*-4}=\frac{-10+2\sqrt{889}}{-8} $
| 12x−3(5+4x)=7x+20 | | 2(3x+7=x+10+5x+4 | | 15x-45=15x+7 | | 0=-16t^2+800^t | | 45+25y=120 | | 10h=78 | | w-89/3=2 | | 5(-2n+5)=15 | | 3^7-x=1/7 | | 8(g-2)=-16+8g | | 7=2-3+4x=6 | | 6n—12=3(2n—12) | | 4a-4=6a+7 | | 3(2c+4)=2c+24 | | 6−j=–3j | | 3(x-4)-2x=5x=4 | | –4(2−2g)= | | -73x-11=7 | | x/4+12=35 | | x+2x+12+x=180 | | -1+3/11t=-10/11 | | –10−2z=8z | | 10y+7=5y+12 | | (3x+9)+x+(x+28)=184 | | –8+2s=–2s | | f.8=40 | | (20+a)+(319-a)10=319(5,860) | | −2x+8x-6+9=0 | | 4.50+2.50x=12 | | 3x^2−4x+7=0 | | 20+x/2=15 | | b+9/5=20 |