If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(11x-30)(5x+2)
We move all terms to the left:
180-((11x-30)(5x+2))=0
We multiply parentheses ..
-((+55x^2+22x-150x-60))+180=0
We calculate terms in parentheses: -((+55x^2+22x-150x-60)), so:We get rid of parentheses
(+55x^2+22x-150x-60)
We get rid of parentheses
55x^2+22x-150x-60
We add all the numbers together, and all the variables
55x^2-128x-60
Back to the equation:
-(55x^2-128x-60)
-55x^2+128x+60+180=0
We add all the numbers together, and all the variables
-55x^2+128x+240=0
a = -55; b = 128; c = +240;
Δ = b2-4ac
Δ = 1282-4·(-55)·240
Δ = 69184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69184}=\sqrt{64*1081}=\sqrt{64}*\sqrt{1081}=8\sqrt{1081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-8\sqrt{1081}}{2*-55}=\frac{-128-8\sqrt{1081}}{-110} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+8\sqrt{1081}}{2*-55}=\frac{-128+8\sqrt{1081}}{-110} $
| 4x–6=2x–4 | | x+3+2x=5x+3 | | x^2−20x−69=0 | | 25+(x+65)=180 | | 20+x-3+12=11 | | 49+106+(3x+10)=180 | | x-108=-112 | | (9x+2)=(15x-52) | | 7z+5=6z-9 | | 7478/w=36 | | 71+64+(8x-17)=180 | | 9x-5=4x+13 | | 4r+5=3r+10 | | 180=(6x+1)(x+4) | | -4x^=6 | | 10y-9y+7=-10 | | 45+80+(9x-17)=180 | | 57+90+(4x+1)=180 | | 172-w=117 | | -4=2(p-4) | | 277=-v+30 | | –8w+4=12 | | 426=142x | | 35(x)+60(7-x)=350 | | 25=13−4s | | x^2-26x+169=25 | | 215=43x | | 5a+5=2a-4 | | 108-x=171 | | −18=9x–9 | | x=(25/375)-1 | | 1/5x-2=x-1/2 |