180=(10y+6)(8y-6)

Simple and best practice solution for 180=(10y+6)(8y-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(10y+6)(8y-6) equation:



180=(10y+6)(8y-6)
We move all terms to the left:
180-((10y+6)(8y-6))=0
We multiply parentheses ..
-((+80y^2-60y+48y-36))+180=0
We calculate terms in parentheses: -((+80y^2-60y+48y-36)), so:
(+80y^2-60y+48y-36)
We get rid of parentheses
80y^2-60y+48y-36
We add all the numbers together, and all the variables
80y^2-12y-36
Back to the equation:
-(80y^2-12y-36)
We get rid of parentheses
-80y^2+12y+36+180=0
We add all the numbers together, and all the variables
-80y^2+12y+216=0
a = -80; b = 12; c = +216;
Δ = b2-4ac
Δ = 122-4·(-80)·216
Δ = 69264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{69264}=\sqrt{144*481}=\sqrt{144}*\sqrt{481}=12\sqrt{481}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{481}}{2*-80}=\frac{-12-12\sqrt{481}}{-160} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{481}}{2*-80}=\frac{-12+12\sqrt{481}}{-160} $

See similar equations:

| -90=6n | | s+20=23 | | 15x+30(x-4)=195 | | -7-7m=-8m+7 | | 5b+1+5b=21 | | 9v-44=-8(v-3) | | 2r^2-18r=0 | | 4.6x-3=-0.4x+11.2 | | 5.3x+8=53 | | 220+0.15x=358 | | 5x-10=5x+17 | | 60=5m+2 | | -20=5(w+2)-8w | | -20=(w+2)-8w | | 7x=x/6+17 | | 4x+15=-65 | | -26=p-11 | | 8^(x-5)=16 | | 36=3(w+8)-7w | | 12(y+1)=60 | | 3m+15=5m-3 | | 5a-10=5a+17 | | 190+0.25x=370 | | 10+4x=5(x-5)+33 | | 6y-10=4(2y+7)-12 | | 33x-2=52 | | p–3(p-5)=10 | | -18=2+5n | | 12-4=4x-76 | | 12x=x^2-1.6x+6.4 | | -14r-9=303 | | 5a-10=5a |

Equations solver categories