If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2=49
We move all terms to the left:
17x^2-(49)=0
a = 17; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·17·(-49)
Δ = 3332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3332}=\sqrt{196*17}=\sqrt{196}*\sqrt{17}=14\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{17}}{2*17}=\frac{0-14\sqrt{17}}{34} =-\frac{14\sqrt{17}}{34} =-\frac{7\sqrt{17}}{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{17}}{2*17}=\frac{0+14\sqrt{17}}{34} =\frac{14\sqrt{17}}{34} =\frac{7\sqrt{17}}{17} $
| y/3=y-4 | | 3-3x=5x+3 | | 3.5x+3.5(x+1)=31.25 | | p+(p+3)+(p-4)=20 | | 28x+(-144)=10x+90 | | 3x+5=-4x-9, | | 84-4x=30-10x | | (1+x)^2=1.1024 | | 6-x=3x-15 | | 2x/3+312=8 | | 2x+312=8 | | 4/a=5/30 | | F(x)=10^12 | | 2(6-x)/5=3(x-4)/2 | | n*5/6=-15 | | -4.5y=0 | | 4x+20×^2=0 | | 10m^2+4=53-6m^2 | | -(7-3y)+4Y=7 | | 2(6x-12)=2x-48 | | x-11.08=5.41 | | 4y+6=3y+6 | | 0.08y+0.1(100-y)=9.6 | | ?x1.5=7.5 | | 10x^2-224=2^2 | | 3x+6=3(2+x | | 3z+1/3=17/27 | | 0=18+3(m+12) | | 25j=5(5j+1) | | 10+2x+7x=28 | | -6(u-5)=-3u+6 | | 9y+46=2y+18 |