If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-6x-9=0
a = 17; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·17·(-9)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-18\sqrt{2}}{2*17}=\frac{6-18\sqrt{2}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+18\sqrt{2}}{2*17}=\frac{6+18\sqrt{2}}{34} $
| x=16x18º | | F(x)=2x²+3x+3 | | LA=8x-10^;LB=3x+90^ | | x+1/4=x−2/3 | | 6c+4=35 | | 7(x+3)-2x=21-x | | 4(k-13)=72 | | .8x+6=5(x-2)+3 | | b+0.5=0 | | 6(x-4)=2(4+x) | | 6(x-4)=2(4-x) | | 3(4x-8)=10x-6 | | 0.5×5x×3x=270 | | (5×4)-(12÷2)=n | | 3/4+n=36 | | 3c^2+2c=9 | | 2.20w+3w-12=11 | | 1.13x+10=7x+52 | | -5x(3x+7)-8=17 | | 100=10+3b | | 20=5b^2 | | 3x/4-1/7=-5 | | 133+7x=-70 | | -32-4x=12 | | 0.5d=1 | | 19=5+2p | | 5-3(5x+2)=4(7-3x)+2 | | 15+2z=23 | | 4a-(3a-a)=17. | | (n+3)^2=1 | | 2z/(z+3)=3/(z−10)+2 | | x^2-30x+168=0 |