If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+48x=9
We move all terms to the left:
17x^2+48x-(9)=0
a = 17; b = 48; c = -9;
Δ = b2-4ac
Δ = 482-4·17·(-9)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-54}{2*17}=\frac{-102}{34} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+54}{2*17}=\frac{6}{34} =3/17 $
| -5x-2x=-11 | | -64+m=-10 | | x+4=8x-10 | | (6x-2)/9+3x+5)/18=13 | | 3(2x-3)=25 | | P=2x+(128/x) | | 0,75·x-2=37 | | 2.25+4x=-2x+0.75 | | X-4(x-7)+10=3x+2(x-1) | | 7x-(4x+3x)-1=19 | | -5x-4x+1=28 | | 2x2−6x+2=0 | | 3/4=d46.50 | | у=-x^2+3x+6. | | 3x*x-5x+2=0 | | 3(4-x)+x-16=0 | | 8x+69=4x+93 | | x3+4x2-2x-8=0 | | 8x3+2x2-3x=0 | | 7x^2-72x-144=0 | | 5a+(-12-9a)=-3(7a+3) | | 7-(4n-1)=2-5n | | -4x-2=6x+2 | | 5w+5=4w+9= | | 8q-7=3q+4 | | (3x^2)-75x+450=0 | | (3x2)+75x+450=0 | | x+39=86+11 | | x-24=40/8 | | 0.977^x=0.003 | | -6+120/y=24 | | 140/x-19=51 |