If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2-9=0
a = 16; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·16·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*16}=\frac{-24}{32} =-3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*16}=\frac{24}{32} =3/4 $
| y2-8y+12=0 | | 9=-2+v | | 2(8r+5)-3=4(4-1)+11 | | x/5+14=41 | | 4(2k-3)+1=(8k-11) | | 8y+21=4 | | 3-(4w+5)=½(8w+28 | | 5x-29=3x-11 | | 40x=3(5x+8) | | 4x+81=10x-9 | | Z=y-1 | | 5r+15=75 | | 9x+22=2x+127 | | 3x=-7=x+5 | | 10x-9=6x+8 | | 11u−3=7u+49 | | 2x-3+(90-75)=4x-15 | | 1•5y-7=0•5y | | -20=w/4-4 | | 6=5v+v | | 2,5*x=20 | | 20=b+50 | | 1/2x+1/4=8 | | 8t+4=5t-5 | | 2x+6=14/3 | | 4x-1=9-5 | | 3(x^2-13+6)=18 | | 4x-1=9x-5 | | 4x−1=9x−5 | | 1-3(c-1)=2(c+5)-16 | | 3(x^2-13x+6)=18 | | 44=2(x-5 |