If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-9=0
a = 16; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·16·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*16}=\frac{-24}{32} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*16}=\frac{24}{32} =3/4 $
| 8x-27=5 | | 25-x-36=-114 | | (5500+900-x)/x=0 | | 36x-25=-114 | | 10=10+11y | | 2=-6x+4-2 | | 10(-6x)=67 | | 6/12=x/36 | | x/95+75=96 | | x-1/4=x+2/3 | | 3(2n+1)=8(9n+5)+5 | | 4x-x=57 | | x+9=3-2x | | 5.25x+12.95=50 | | 55-x=-45-x | | x-1/4=x+2/4 | | 4.5x-0.5=13 | | 3^(x-6)=1/81 | | 95/x+75=96 | | 3^x-6=1/81 | | 8s+5s-6=10s+9 | | 3x-2/4-3x=12 | | (t-3)(t-9)=0 | | (g+8)=(17-2g) | | -10-3u=-8u | | 7x-16=2x+9 | | -2v-9=-5v+6 | | 0.4(5−0.4n)=−3.2 | | -2y=1-y | | 4,5+1,5k=18−3k | | (8/x-4)-5/(x-1)=3 | | 4u-10=-10+2u |