If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+32x=0
a = 16; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·16·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*16}=\frac{-64}{32} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*16}=\frac{0}{32} =0 $
| -2y+13y-(-15=-7 | | 75=x+81 | | 8p+4=6p-7 | | -2x-14=-9x+21 | | 4g-2g+1=15 | | b=8b-4=5 | | 0.8(4p+5)=4(0.5p-2 | | 99=168-w | | F(0)=2x-6 | | 40w+100=20w+400 | | y/8+9=30 | | -6u-(3/4)=(3/2u)+(7/3) | | -x+182=131 | | 2(d-5)-4=7(d+2)+2 | | F(-1/2)=2x-6 | | -7/4-1/3v=-7/5 | | 2w-4/3=-5/2w-7/4 | | 2x-3/8+x=2x+3/2+3 | | -(5/6)=x-(1/4) | | -x+182=132 | | -5x-10=-2x-28 | | 4-4/5(4x+3)=-24 | | -6(2x-3)+7=-12x+25 | | 2(3-4x)=2x-14 | | 25-5x=15(3)+12x | | F(x)=-6^2-6(-6)+6 | | 6x^2=41x+7 | | 5x-4*10=4/5 | | 5p+6p=3p | | 8(x+3)-1=29-6x-6+14x | | 1/6y+8=7y-33 | | 15+8=-x |