If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+16x+2=0
a = 16; b = 16; c = +2;
Δ = b2-4ac
Δ = 162-4·16·2
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{2}}{2*16}=\frac{-16-8\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{2}}{2*16}=\frac{-16+8\sqrt{2}}{32} $
| 3.18.9=2.1x | | 3y+4=5y+7 | | -7(r+4)-5r=-4(1+2r | | (4x-19)^((1)/(3))=x-1 | | 9)^((1)/(3))=x-1 | | X(x+8)(2x-3)=0 | | 5x8=25 | | -96-5x=79-12x | | 2/5n+1/10=1/2+(n+4) | | -100+5x=9x+44 | | 4x2+12x-49=0 | | -193-3x=119+9x | | 2-x/43=1 | | 6(x-2)-2=2x+4(3+x) | | 2-x/4*3=1 | | -109+11x=-x+107 | | 3z-2=6+z | | 7x+6-5x+10=4 | | -6(5+m)=-366 | | 50-6x=20+9x | | -145+4x=12x+127 | | 29.5-5.5x=2.25+26.25 | | 8x+9x-50=100 | | 2/3(18+x)=42+2/3 | | S=4s÷7-1 | | 2/3(18+x)=422/3 | | X+x*2+x/2+8000=50000 | | 24=x/2+9 | | H=20t | | 4(2+x)=30 | | v^2+20v+44=8 | | 2x-x+7=x=3=4 |