16x-7/12x+1=1

Simple and best practice solution for 16x-7/12x+1=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x-7/12x+1=1 equation:



16x-7/12x+1=1
We move all terms to the left:
16x-7/12x+1-(1)=0
Domain of the equation: 12x!=0
x!=0/12
x!=0
x∈R
We add all the numbers together, and all the variables
16x-7/12x=0
We multiply all the terms by the denominator
16x*12x-7=0
Wy multiply elements
192x^2-7=0
a = 192; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·192·(-7)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{21}}{2*192}=\frac{0-16\sqrt{21}}{384} =-\frac{16\sqrt{21}}{384} =-\frac{\sqrt{21}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{21}}{2*192}=\frac{0+16\sqrt{21}}{384} =\frac{16\sqrt{21}}{384} =\frac{\sqrt{21}}{24} $

See similar equations:

| 12(x+5=0 | | 5x/2-3/2=11 | | 96x+103(1297.308-41x)63=3954.773 | | 96(1297.308-63y)/41+103y=3954.773 | | 2x-6x=8x | | 4.9t^2+343t-2846.9=0 | | t^2+3t-98=0 | | 202500x=225000 | | 2x+5(0)=12 | | 2x+5(1)=12 | | 16x/7=135 | | x-7.9=0.8 | | 1/3(6x-9)+3x=1/4(8x-12)+3x | | x+(7x/6)+(x/3)=180 | | 24x=16666 | | 9x+2=4x+9= | | 3x-11=9x-14 | | 2x*3-3x*2-13x+7=0 | | 59=-13-8m | | -3k=14 | | x/5-1/2=x/8+1/6 | | 2(3x+5)-3(x-7)=4 | | 49x^2-16x+16=0 | | 4b+3/4b-1=b+1/b-1 | | 8x+3=3x+11 | | 11x=4=3x-12 | | 2b=13=37 | | x=(98.6-y)/1.4 | | 180=5y+y | | 180=4x+8x | | 5x-20=3x+16 | | -16y=-8 |

Equations solver categories