16x(1-2x)=4(x-3)

Simple and best practice solution for 16x(1-2x)=4(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x(1-2x)=4(x-3) equation:



16x(1-2x)=4(x-3)
We move all terms to the left:
16x(1-2x)-(4(x-3))=0
We add all the numbers together, and all the variables
16x(-2x+1)-(4(x-3))=0
We multiply parentheses
-32x^2+16x-(4(x-3))=0
We calculate terms in parentheses: -(4(x-3)), so:
4(x-3)
We multiply parentheses
4x-12
Back to the equation:
-(4x-12)
We get rid of parentheses
-32x^2+16x-4x+12=0
We add all the numbers together, and all the variables
-32x^2+12x+12=0
a = -32; b = 12; c = +12;
Δ = b2-4ac
Δ = 122-4·(-32)·12
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{105}}{2*-32}=\frac{-12-4\sqrt{105}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{105}}{2*-32}=\frac{-12+4\sqrt{105}}{-64} $

See similar equations:

| 0.8-s=2560 | | 25x(x*2+3x)=2(2x+6) | | 10÷17a=9÷13= | | -2(2x-6)=3(3x-(1/3)) | | -4=x²+7 | | x4-3x2+6=0 | | $71=$120-($15+x+$7.50 | | 8k-k+7-(-5k)-8=0 | | 10+7y-2y=60 | | 0=-(15y-1)+24+2(5+5y) | | (5m-6)=(m-9) | | 55^x=27 | | 7m-21m=9+3 | | 16=8(y+9) | | 75+12=6m+9 | | 9=c/6 | | 12x-5x=5x | | 0.22(x+5)=0.2x+3.20 | | 75x=3000 | | 75x=300 | | 3(a+10)=6(a+5)-3a | | 4x-8=-7x=9 | | 0.65x=20 | | -7n+8=-5n-8 | | 2x+9/2x+7=2x+7/2x+9 | | -14-(-49)=x/7 | | 91x^2-108x+32=0 | | 9x(2)=36x | | [6(2y-3)=42 | | 180=15+(12x-12)+(3x+18) | | 5y+9=15y | | 46-14=4(x-9) |

Equations solver categories