16t2+8t-140=0

Simple and best practice solution for 16t2+8t-140=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t2+8t-140=0 equation:



16t^2+8t-140=0
a = 16; b = 8; c = -140;
Δ = b2-4ac
Δ = 82-4·16·(-140)
Δ = 9024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9024}=\sqrt{64*141}=\sqrt{64}*\sqrt{141}=8\sqrt{141}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{141}}{2*16}=\frac{-8-8\sqrt{141}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{141}}{2*16}=\frac{-8+8\sqrt{141}}{32} $

See similar equations:

| 4(b+3)-10b=48 | | 9z+9=–5+2z | | 6r+3=9r+18 | | 7r-6=8r | | 9f+14=20f | | 15+3(5+w)=6 | | 2/3(v-3)=1/3(v=6) | | 9=-1x+6 | | r+r=12 | | 3=(x4)x10} | | 5x-0.375(16x-24)=5(3x-6)+7 | | 9f+14=11f | | (3x^2-5=) | | (2x+x=2x-x)=180 | | 2/3(v-3)=1/3(v=6 | | 5+2(x-3)+x=32 | | 11d-7d-3D=15 | | -5.4=2.1+y/3 | | 3n+7=5n-13 | | -7(x+8)-42=3-52 | | 75=-3(-6n-5 | | 107+5x=57+9x | | -5v-8(1+7v)=-8 | | 4x-28=21 | | -5+4w=9w | | -15+42=-3(x+5) | | 63x-5=-2-x+8+2x | | -7/8(-8/7)x-3/4=20(-8/7 | | -5y+10+9y=34 | | x+0.2-0.2=0-0.8-0.2 | | -8(1-7m)=40+8m | | -3x-3=-5 |

Equations solver categories