If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+400t=-4
We move all terms to the left:
16t^2+400t-(-4)=0
We add all the numbers together, and all the variables
16t^2+400t+4=0
a = 16; b = 400; c = +4;
Δ = b2-4ac
Δ = 4002-4·16·4
Δ = 159744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{159744}=\sqrt{4096*39}=\sqrt{4096}*\sqrt{39}=64\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-64\sqrt{39}}{2*16}=\frac{-400-64\sqrt{39}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+64\sqrt{39}}{2*16}=\frac{-400+64\sqrt{39}}{32} $
| (x)(2x+3)=90 | | 5w+4=w-8 | | 1/4=z+1/8 | | z/4-3=3 | | 9-7x=-1 | | 13.17=2g+3.55 | | 2(20+0.5y)-y=40 | | X/x/69=9/30 | | 2(s+22)=66 | | 0=-0.025x+1.95 | | -32=17+n | | 8y−4=4y+20 | | 6x-21=4x+21 | | O.4n+6=1 | | -3/4t=14 | | 85=21^x | | m/12=14 | | 8=v-36/7 | | 5x+9=3x+0 | | -6x–5=-2x+7 | | 18=10+2z | | 1x+9=3x+0 | | -40+8a=4(a-3)+8a | | 180=2n+25 | | X+4y=43 | | 8a+4=3(a-3)+8a | | y3+3=73y +3=7 | | 10+3z=2z+9 | | y/8+7=-1/2 | | 6x-2=7-5x | | x=165.3-130.5/130.5 | | 3(x−1)=4x−7 |