16=6+x2

Simple and best practice solution for 16=6+x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=6+x2 equation:



16=6+x2
We move all terms to the left:
16-(6+x2)=0
We add all the numbers together, and all the variables
-(+x^2+6)+16=0
We get rid of parentheses
-x^2-6+16=0
We add all the numbers together, and all the variables
-1x^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $

See similar equations:

| -44-10x=-7x(x+8) | | (20t^2+t)^2-22(20t^2+t)+21=0 | | 6(x÷3)=30 | | 1/2(2n-8)=26 | | 6-2m+3-4m=51 | | -(-8)p+(-6p)=-112 | | -35 = f5– 43 | | 11x-14=4x+14 | | 10x-11/13-9x=14/13+18/13 | | 11x+0.67(9x−12)=19x−2(x−4) | | -2.5x-9=16 | | 11x+23(9x−12)=19x−2(x−4) | | -3=j+65 | | y÷3=30 | | (7x−6)=(5x+2) | | 4(-8x+3)=32x-36 | | (20t^2+t)^2-22(20t^2+t)=21 | | 3x-103=10x+49 | | 5x+9=50 | | j-4=29 | | 5(-8x+3)=32x-36 | | 479124782819471924712904x+3=49018401298340249812094x-4 | | t^2-2t-7=0 | | (7x−5)=(5x+27) | | g+10=14 | | -13n+2=-12n-11 | | 8x-6=2x+22 | | -8(4+7b)+7b=-288 | | 6y=30y+130 | | (7x+9)=(9x+5) | | 1/10(2x−4)=15(x−2) | | 15x+60=240 |

Equations solver categories