16=2+a(2)

Simple and best practice solution for 16=2+a(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=2+a(2) equation:



16=2+a(2)
We move all terms to the left:
16-(2+a(2))=0
We add all the numbers together, and all the variables
-(+a^2+2)+16=0
We get rid of parentheses
-a^2-2+16=0
We add all the numbers together, and all the variables
-1a^2+14=0
a = -1; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-1)·14
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*-1}=\frac{0-2\sqrt{14}}{-2} =-\frac{2\sqrt{14}}{-2} =-\frac{\sqrt{14}}{-1} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*-1}=\frac{0+2\sqrt{14}}{-2} =\frac{2\sqrt{14}}{-2} =\frac{\sqrt{14}}{-1} $

See similar equations:

| 60-6x=12 | | 5+5x=-21 | | 34.425-1.5x=19.8+2.25 | | 15-c=4 | | 2m-8=6m | | 3)-9=-3x | | 5x2+x-4=O | | 2x+75=151 | | 17=x/18 | | 15g-13g-g=17 | | 3d2+16d+13=0 | | -16k+4k=10(2+k) | | 5x÷5=6x÷7 | | 3x+5×+7=71 | | 2(4-3x)=-6x+2 | | 12=-2x-3-x | | 8+6n=6n-8(n-5 | | -80=-5x | | -2x-5=6x+3 | | 4x-8=x+3(x+5) | | 12(k–8)=84 | | 2+8a=-54 | | 1/2•n=10 | | 5y+3=-15 | | 15+2b=23* | | -16k+4k=10k(2+k) | | u+3u-u=18 | | 3(z-44)=96 | | 5x^+x=4 | | 4.5+10m=7.67 | | x^2−13x=−5x | | 3(2x-1)+21=5(x-2)+1 |

Equations solver categories