168=20+1k(k+20)

Simple and best practice solution for 168=20+1k(k+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 168=20+1k(k+20) equation:



168=20+1k(k+20)
We move all terms to the left:
168-(20+1k(k+20))=0
We calculate terms in parentheses: -(20+1k(k+20)), so:
20+1k(k+20)
determiningTheFunctionDomain 1k(k+20)+20
We multiply parentheses
k^2+20k+20
Back to the equation:
-(k^2+20k+20)
We get rid of parentheses
-k^2-20k-20+168=0
We add all the numbers together, and all the variables
-1k^2-20k+148=0
a = -1; b = -20; c = +148;
Δ = b2-4ac
Δ = -202-4·(-1)·148
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{62}}{2*-1}=\frac{20-4\sqrt{62}}{-2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{62}}{2*-1}=\frac{20+4\sqrt{62}}{-2} $

See similar equations:

| 3(x-4)+3=x-1 | | (4x-3)+135=180 | | 3/x+5+4/x-5=40/(x+5)(x-5) | | n+140-140=180-180 | | Xx3=-16 | | 5x-25=3x+61 | | 8=c+20 | | 3x-14-5x=-70 | | x15=13 | | 3+2x=-9+5 | | 5n+8=n+4 | | 4p+3p-2p+8p-13=13 | | -2g-12=18 | | m-65=87 | | M+2=-14-n | | -13m=169 | | 2t=-t | | 5=2/7(2x+28) | | (y+7)+(3y+17)=180 | | -6(1-6r)=-(1r+3) | | -6x-2(3-5x)=40 | | -3/4x=-15/16 | | 19(x+23)=29(x+31) | | 7q+4=-10-7q | | 7x+1=10x-35 | | 200=120+.20x | | (11y+6)+86=180 | | -3x+14-5x=-70 | | 9a-3=(4a-9)= | | 3+r=3r+3 | | 3x+18=6(2x−6) | | 4^(2x)=((1)/(2))^(x+5) |

Equations solver categories