15y+6-2/3y=32+0,5y

Simple and best practice solution for 15y+6-2/3y=32+0,5y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15y+6-2/3y=32+0,5y equation:



15y+6-2/3y=32+0.5y
We move all terms to the left:
15y+6-2/3y-(32+0.5y)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
We add all the numbers together, and all the variables
15y-2/3y-(0.5y+32)+6=0
We get rid of parentheses
15y-2/3y-0.5y-32+6=0
We multiply all the terms by the denominator
15y*3y-(0.5y)*3y-32*3y+6*3y-2=0
We add all the numbers together, and all the variables
15y*3y-(+0.5y)*3y-32*3y+6*3y-2=0
We multiply parentheses
-0y^2+15y*3y-32*3y+6*3y-2=0
Wy multiply elements
-0y^2+45y^2-96y+18y-2=0
We add all the numbers together, and all the variables
44y^2-78y-2=0
a = 44; b = -78; c = -2;
Δ = b2-4ac
Δ = -782-4·44·(-2)
Δ = 6436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6436}=\sqrt{4*1609}=\sqrt{4}*\sqrt{1609}=2\sqrt{1609}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{1609}}{2*44}=\frac{78-2\sqrt{1609}}{88} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{1609}}{2*44}=\frac{78+2\sqrt{1609}}{88} $

See similar equations:

| 5p-12=9p+4 | | 14-7w=-4(3w=9) | | 4c+4=-28 | | 3(x-6)=4x-24 | | 8(x+4)=12x+-4 | | 0.5x+1.5=0.7x-0.9 | | 2(3x+2)=8-8 | | -3/2x=11/4+17/8 | | 3x+1=2x=4 | | 5y2+2y=0 | | 11=-11t | | 6=12×-2x | | 2xx=120 | | 4n+1=10 | | -4x=55-64x | | 2x+3÷6=10 | | 5(11x-2=155 | | 8x((1-4x)/8)=7 | | 7x-2=5x=15 | | 6x+5=3x=15 | | 5x-145=0 | | (x+1)(x-1)(x^2+7x)(x-4)-2=2x | | 4(3x-1)³=32 | | 53=8*6/x | | 7x+10=3x-6 | | 7/2x+1=15 | | 53=8(6/x) | | 5x+4=3x-2-3x | | a/6+4=14 | | 3x-8/4=1 | | 12+3k=k | | 15+1x=12 |

Equations solver categories