If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-8x-12=0
a = 15; b = -8; c = -12;
Δ = b2-4ac
Δ = -82-4·15·(-12)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-28}{2*15}=\frac{-20}{30} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+28}{2*15}=\frac{36}{30} =1+1/5 $
| 7y-13=4y+2 | | -36-1/4p=1/4p | | 216x=24 | | 4(b+5)=3(3b-5) | | X^2+12x-13=10x+2 | | 18+2x=9x | | 18+x2=9x | | (2/5)x+15=2x-8 | | 2/5x+15=2x-8 | | -n+6+-n=8 | | 7.4z=3.7z+9.25 | | 3(x-1)=-5x+13 | | -24+6n=-42 | | 4x+2x–3=–21 | | 2+7u=86 | | 58=8v+10 | | n/6+69=74 | | 16+2=4g | | 18=4p-2 | | 1+3p=13 | | 3/5=x/27 | | -9(x+3)+2x+7=8x+6 | | 2x+110°=180° | | 4x-1)+2x=8 | | -7=-y/2 | | 15w+18w-6+2=-5w+2-6 | | 10/a=15/42 | | 28/12=w/3 | | 2x+10°+x+30=180° | | 14^10x=17^(x-3) | | 1/3(y−5)=7 | | (3x+6)°=36 |